ELEMENTS
of the
DIFFERENTIAL and INTEGRAL CALCULUS.

DIFFERENTIAL CALCULUS.
Of the differentiation of algebraic quantities.

1. We say that one variable is a function of another when the first is equal to a certain compound analytical expression of the second; for example, \(y \) is a function of \(x \) in the following equations:
 \[y = (a-x)^2, \quad y = x^2 - 3x^2, \quad y = \frac{x^2}{a}, \quad y = b + ox^2, \quad y = (a + bx + ax^2 + bx^3)^2. \]

2. Let us consider a function in its state of augmentation, in consequence of the increase of the variable which it contains. As every function of a variable \(x \) can be represented by the ordinate of a curve \(BMM \), let \(AB = x \) and \(TM = y \) be the ordinates of a point \(M \) of this curve, and let us suppose that the abscissa \(AB \) receives an increment \(PP = h \); the ordinate \(TM \) will become \(TM = y' \); Fig. 1. To obtain the value of this new ordinate, we see that it is necessary to change \(x \) into \(x + h \) in the equation of the curve, and the value which this equation will then determine for \(y \) will be that of \(y' \).

For example, if we had the equation \(y = mx^2 \), we should obtain \(y' \) by changing \(x \) into \(x + h \), and \(y \) into \(y' \); and we should have
 \[y' = m(x+h)^2 = mx^2 + 2mh + mh^2. \]

3. Let us now take the equation \(y = x^2 \)
 \[y' = (x+h)^2 = x^2 + 3xh + 3xh + h^2; \]
 if from this equation we subtract equation (1), there will remain
 \[y' - y = 3xh + 3xh + h^2; \quad \text{and dividing by } h \]
 \[\frac{y' - y}{h} = 3x + 3x + h. \]

Let us see what this result teaches us: \(y' - y \) represents the increment of the function \(y \) in consequence of the increment \(h \) given to \(x \); since this difference \(y' - y \) is that of the new state of magnitude of \(y \), as respects its primitive state.

On the other hand, the increment of \(x \) being \(h \), it follows that \(\frac{y' - y}{h} \), which is the ratio of the increment